8-Puzzle Solution executes infinitely [migrated]

Posted by Ashwin on Programmers See other posts from Programmers or by Ashwin
Published on 2012-10-24T16:17:23Z Indexed on 2012/10/24 17:13 UTC
Read the original article Hit count: 352

I am looking for a solution to 8-puzzle problem using the A* Algorithm. I found this project on the internet. Please see the files - proj1 and EightPuzzle. The proj1 contains the entry point for the program(the main() function) and EightPuzzle describes a particular state of the puzzle. Each state is an object of the 8-puzzle.
I feel that there is nothing wrong in the logic. But it loops forever for these two inputs that I have tried : {8,2,7,5,1,6,3,0,4} and {3,1,6,8,4,5,7,2,0}. Both of them are valid input states. What is wrong with the code?


Note

  • For better viewing copy the code in a Notepad++ or some other text editor(which has the capability to recognize java source file) because there are lot of comments in the code.
  • Since A* requires a heuristic, they have provided the option of using manhattan distance and a heuristic that calculates the number of misplaced tiles. And to ensure that the best heuristic is executed first, they have implemented a PriorityQueue. The compareTo() function is implemented in the EightPuzzle class.
  • The input to the program can be changed by changing the value of p1d in the main() function of proj1 class.
  • The reason I am telling that there exists solution for the two my above inputs is because the applet here solves them. Please ensure that you select 8-puzzle from teh options in the applet.

    EDIT
    I gave this input {0,5,7,6,8,1,2,4,3}. It took about 10 seconds and gave a result with 26 moves. But the applet gave a result with 24 moves in 0.0001 seconds with A*.


    For quick reference I have pasted the the two classes without the comments :

EightPuzzle


 import java.util.*;

    public class EightPuzzle implements Comparable <Object> {


            int[] puzzle = new int[9];
            int h_n= 0;
            int hueristic_type = 0;
            int g_n = 0;
            int f_n = 0;
            EightPuzzle parent = null;


            public EightPuzzle(int[] p, int h_type, int cost)
            {
                    this.puzzle = p;
                    this.hueristic_type = h_type;
                    this.h_n = (h_type == 1) ?  h1(p) : h2(p);
                    this.g_n = cost;
                    this.f_n = h_n + g_n;
            }
            public int getF_n()
            {
                    return f_n;
            }
            public void setParent(EightPuzzle input)
            {
                    this.parent = input;
            }
            public EightPuzzle getParent()
            {
                    return this.parent;
            }

            public int inversions()
            {
                    /*
                     * Definition: For any other configuration besides the goal,
                     * whenever a tile with a greater number on it precedes a
                     * tile with a smaller number, the two tiles are said to be inverted
                     */
                    int inversion = 0;
                    for(int i = 0; i < this.puzzle.length; i++ )
                    {
                            for(int j = 0; j < i; j++)
                            {
                                    if(this.puzzle[i] != 0 && this.puzzle[j] != 0)
                                    {
                                    if(this.puzzle[i] < this.puzzle[j])
                                            inversion++;
                                    }
                            }

                    }
                    return inversion;

            }
            public int h1(int[] list)
            // h1 = the number of misplaced tiles
            {
                    int gn = 0;
                    for(int i = 0; i < list.length; i++)
                    {
                            if(list[i] != i && list[i] != 0)
                                    gn++;
                    }
                    return gn;
            }
            public LinkedList<EightPuzzle> getChildren()
            {
                    LinkedList<EightPuzzle> children = new LinkedList<EightPuzzle>();
                    int loc = 0;
            int temparray[] = new int[this.puzzle.length];
            EightPuzzle rightP, upP, downP, leftP;
                    while(this.puzzle[loc] != 0)
                    {
                            loc++;
                    }
                    if(loc % 3 == 0){
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 1];
                            temparray[loc + 1] = 0;
                            rightP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            rightP.setParent(this);
                            children.add(rightP);

                    }else if(loc % 3 == 1){
                    //add one child swaps with right
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 1];
                            temparray[loc + 1] = 0;

                            rightP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            rightP.setParent(this);
                            children.add(rightP);
                            //add one child swaps with left
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 1];
                            temparray[loc - 1] = 0;

                            leftP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            leftP.setParent(this);
                            children.add(leftP);
                    }else if(loc % 3 == 2){
                    // add one child swaps with left
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 1];
                            temparray[loc - 1] = 0;

                            leftP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            leftP.setParent(this);
                            children.add(leftP);
                    }              

                    if(loc / 3 == 0){
                    //add one child swaps with lower
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 3];
                            temparray[loc + 3] = 0;

                            downP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);

                            downP.setParent(this);

                            children.add(downP);


                    }else if(loc / 3 == 1 ){
                            //add one child, swap with upper
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 3];
                            temparray[loc - 3] = 0;

                            upP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            upP.setParent(this);

                            children.add(upP);
                            //add one child, swap with lower
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 3];
                            temparray[loc + 3] = 0;

                            downP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            downP.setParent(this);

                            children.add(downP);
                    }else if (loc / 3 == 2 ){
                            //add one child, swap with upper
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 3];
                            temparray[loc - 3] = 0;

                            upP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            upP.setParent(this);

                            children.add(upP);
                    }

                    return children;
            }
            public int h2(int[] list)
            // h2 = the sum of the distances of the tiles from their goal positions
            // for each item find its goal position
            // calculate how many positions it needs to move to get into that position
            {
                    int gn = 0;
                    int row = 0;
                    int col = 0;
                    for(int i = 0; i < list.length; i++)
                    {
                            if(list[i] != 0)
                            {
                                    row = list[i] / 3;
                                    col = list[i] % 3;
                                    row = Math.abs(row - (i / 3));
                                    col = Math.abs(col - (i % 3));
                                    gn += row;
                                    gn += col;
                            }

                    }
                    return gn;
            }

            public String toString()
            {
                    String x = "";
                    for(int i = 0; i < this.puzzle.length; i++){
                            x += puzzle[i] + " ";
                            if((i + 1) % 3 == 0)
                                    x += "\n";
                    }
                    return x;
            }
            public int compareTo(Object input) {


                    if (this.f_n < ((EightPuzzle) input).getF_n())
                            return -1;
                    else if (this.f_n > ((EightPuzzle) input).getF_n())
                            return 1;
                    return 0;
            }

            public boolean equals(EightPuzzle test){
                    if(this.f_n != test.getF_n())
                            return false;
                    for(int i = 0 ; i < this.puzzle.length; i++)
                    {
                            if(this.puzzle[i] != test.puzzle[i])
                                    return false;
                    }
                    return true;
            }
            public boolean mapEquals(EightPuzzle test){
                    for(int i = 0 ; i < this.puzzle.length; i++)
                    {
                            if(this.puzzle[i] != test.puzzle[i])
                                    return false;
                    }
                    return true;
            }

    }

proj1

import java.util.*;

public class proj1 {

        /**
         * @param args
         */

        public static void main(String[] args) {


                int[] p1d = {1, 4, 2, 3, 0, 5, 6, 7, 8};
                int hueristic = 2;
                EightPuzzle start = new EightPuzzle(p1d, hueristic, 0);
                int[] win = { 0, 1, 2,
                                          3, 4, 5,
                                          6, 7, 8};
                EightPuzzle goal = new EightPuzzle(win, hueristic, 0);

                astar(start, goal);



        }

        public static void astar(EightPuzzle start, EightPuzzle goal)
        {
                if(start.inversions() % 2 == 1)
                {
                        System.out.println("Unsolvable");
                        return;
                }
//              function A*(start,goal)
//           closedset := the empty set                 // The set of nodes already evaluated.
                LinkedList<EightPuzzle> closedset = new LinkedList<EightPuzzle>();
//           openset := set containing the initial node // The set of tentative nodes to be evaluated. priority queue
                PriorityQueue<EightPuzzle> openset = new PriorityQueue<EightPuzzle>();

                openset.add(start);


                while(openset.size() > 0){
//               x := the node in openset having the lowest f_score[] value
                        EightPuzzle x = openset.peek();

//               if x = goal
                        if(x.mapEquals(goal))
                        {
//                   return reconstruct_path(came_from, came_from[goal])
                                 Stack<EightPuzzle> toDisplay = reconstruct(x);
                                 System.out.println("Printing solution... ");
                                 System.out.println(start.toString());
                                 print(toDisplay);
                                 return;

                        }
//               remove x from openset
//               add x to closedset
                        closedset.add(openset.poll());
                        LinkedList <EightPuzzle> neighbor = x.getChildren();
//               foreach y in neighbor_nodes(x)                
                        while(neighbor.size() > 0)
                        {
                                EightPuzzle y = neighbor.removeFirst();
//                   if y in closedset
                                if(closedset.contains(y)){
//                       continue
                                        continue;
                                }
//                   tentative_g_score := g_score[x] + dist_between(x,y)
//      
//                   if y not in openset
                                if(!closedset.contains(y)){
//                       add y to openset
                                        openset.add(y);
//                      
                                }
//                 
                        }
//               
                }
        }

        public static void print(Stack<EightPuzzle> x)
        {
                while(!x.isEmpty())
                {
                        EightPuzzle temp = x.pop();
                        System.out.println(temp.toString());
                }
        }

        public static Stack<EightPuzzle> reconstruct(EightPuzzle winner)
        {
                Stack<EightPuzzle> correctOutput = new Stack<EightPuzzle>();

                while(winner.getParent() != null)
                {
                correctOutput.add(winner);
                winner = winner.getParent();
                }

                return correctOutput;
        }

        }

© Programmers or respective owner

Related posts about java

Related posts about computer-science